蛋白芯片详细

信号通路磷酸化抗体芯片 > 更多 > EGF信号通路磷酸化抗体芯片(PEG214)

EGF信号通路磷酸化抗体芯片(PEG214)

        EGFR(Epidermal Growth Factor Receptor)属于ErbB (Erythroblastic Leukemia Viral Oncogene Homolog)家族(erb1/EGFR, erb2/HER2, erb3/HER3 and erb4/HER4)的最原始成员。EGFR在接受EGF或其序列同源的TGF-alpha(transforming growth factor alpha)配体刺激后,其胞内的酪氨酸区域发生自身磷酸化,进而引起下游PI3K-AKT、RAS-RAF-MAPK及STATs等多条信号通路的活化。EGFR信号通路在细胞生长、创伤修复、肿瘤发生等多种生物现象中发挥重要作用。在乳腺癌、卵巢癌、膀胱癌、前列腺癌、脑癌等的临床靶向用药中,EGFR也成为最为著名的靶点之一。

        EGFR 信号通路磷酸化抗体芯片(PEG214),采用三维高分子膜专利技术,在抗体芯片片基上共价结合214种高特异抗体,并运用特有的荧光标记技术进行样本标记,以实现对EGFR经典信号通路的高覆盖检测。抗体芯片提供信号蛋白多个关键磷酸化位点的同步检测,针对每一个特定蛋白磷酸化位点,设置一对抗体分别检测其磷酸化(Phospho)和非磷酸化(non-Phospho)状态。同时,该抗体芯片可检测多种已有文献报道的非EGFR经典通路的信号蛋白,极大扩展EGFR单一信号通路研究的延伸性。

                    


抗体芯片特点:

           

1. 芯片规格为76 x 25 x 1 mm;                

2. 实现单一信号通路全面筛选;                 

3. 每种抗体设置6次技术重复;                 

4. 适用于组织、细胞等多类型样本;                

5. 5x106细胞、200μg总蛋白量即可满足实验;              

6. 每个检测位点设有磷酸化和非磷酸化配对抗体;                

7. 可通用于人、小鼠、大鼠等多类型模式生物检测。                

                                        

抗体芯片原理:                

                                                       

                                        

                                                       

                                        

                               

抗体芯片列表:                

                                                                                                                                  
详细列表下载  

 

                   

抗体芯片文献:  
      

      
  1.     Lei miao Yin, et al. Transgelin-2 as a therapeutic target for asthmatic pulmonary resistance. SCI TRANSL MED,2018.(上海中医药大学)
  2.      Venkatesh, Humsa S., et al. Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma.Nature 549.7673 (2017): 533.
  3.      Gao Y, et al.Mammalian elongation factor 4 regulates mitochondrial translation essential for spermatogenesis.Nat struct Mol Biol, 2016, 23(5): 441-449. (中国科学院生物物理研究所)

  4.       Jiang HL et al. SSRP1 uppresses TGF-β-Driven Epithelial-to-Mesenchymal Transition and Metastasis in Triple-Negative Breast Cancer by Regulating Mitochondrial Retrograde Signaling, Cancer Res, 2016, 76(4):952-64(复旦大学附属肿瘤医院)

  5.       Kuang XY et al. The phosphorylation-specific association of STMN1 with GRP78 promotes breast cancer metastasis, Cancer Lett ,2016, 377(1):87-96(复旦大学附属肿瘤医院)

 6.       Chen Y, et al. The hepatitis B virus X protein promotes pancreatic cancer through modulation of the PI3K/AKT signaling pathwayCancer Lett, 2016, Jun 21;380(1):98-105. (浙大第二附属医院)

 7.       Zhu Y et al. Long non-coding RNA LOC572558 inhibits bladder cancer cell proliferation and tumor growth by regulating the AKT-MDM2-p53 signaling axisCancer Lett, 2016 ,Apr 26, doi:10.1016/j.canlet.2016,04(3)(复旦大学附属肿瘤医院)

8.       Luo L L, Zhao L, Wang Y X, et al. Insulin-like growth factor binding protein-3 is a new predictor of radiosensitivity on esophageal squamous cell carcinoma. Sci Rep-UK, 2015, 5    (中山大学附属肿瘤医院)

9.      Zhu Y P, Wan F N, Shen Y J, et al. Reactive stroma component COL6A1 is upregulated in castration-resistant prostate cancer and promotes tumor growth. Oncotarget, 2015, 6(16): 14488.    (复旦大学附属肿瘤医院)

 10.      Wang T, Han S, Wu Z, et al. XCR1 promotes cell growth and migration and is correlated with bone metastasis in non-small cell lung cancer. Biochem Bioph Res Co, 2015, 464(2): 635-641.   (上海长征医院)

11.      Chen P, Huang H, Wu J, et al. Bone marrow stromal cells protect acute myeloid leukemia cells from anti‐CD44 therapy partly through regulating PI3K/Akt–p27Kip1 axis. Mol Carcinogen, 2015 Dec;54(12):1678-85.     (福建医科大学附属协和医院)

12.      Wan F, et al. Oxidized low-density lipoprotein is associated with advanced-stage prostate cancer. Tumor Biol, 2015: 1-10.    (复旦大学附属肿瘤医院)

 13.      Zhu R, et al. pH sensitive nano layered double hydroxides reduce the hematotoxicity and enhance the anticancer efficacy of etoposide on non-small cell lung cancer.Acta Biomater. 2016 Jan 1;29:320-32.    (同济大学)

14.      Li W, et al. Withaferin A suppresses the up-regulation of acetyl-coA carboxylase 1 and skin tumor formation in a skin carcinogenesis mouse model.Mol Carcinog. 2015 Oct 16.    (河北大学)

15.      Rao W, et al. OVA66 increases cell growth, invasion and survival via regulation of IGF-1R-MAPK signaling in human cancer cells. CarcinogenesisApril 7, 2014.上海交通大学医学院

16.      Jia D, et al. Amplification of MPZL1/PZR promotes tumor cell migration through Src-mediated phosphorylation of cortactin in hepatocellular carcinoma. Cell Res, 2014, (24):204-217. (上海仁济医院) 

17.      Xu N et al. Activation of RAW264.7 mouse macrophage cells in vitro through treatment with recombinant ricin toxin-binding subunit B: Involvement of protein tyrosine, NF-κB and JAK-STAT kinase signaling pathways. Int J Mol Med. 2013; 32(3): 729-735. (吉林大学)

18.      Li F et al. Superoxide Mediates Direct Current Electric Field-Induced Directional Migration of Glioma Cells through the Activation of AKT and ERK. PLoS ONE. 2013; 8(4): e61195. (第三军医大学)

19.      Ranzato E et al. Epithelial mesenchymal transition traits in honey-driven keratinocyte wound healing: comparison among different honeys. Wound Repair Regen. 2012; 20(5):778-85.

20.       Zhang YM et al. A novel angiogenesis inhibitor impairs lovo cell survival via targeting against human VEGFR and its signaling pathway of phosphorylation. Cell Death Dis. 2012; 3: e406. (西安交通大学)